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Abstract. Most work on requirements in the area of authentication
protocols has concentrated on identifying requirements for the protocol
without much consideration of context. Little work has concentrated on
assumptions about the environment, for example, the applications that
make use of authenticated keys. We will show in this paper how the in-
teraction between a protocol and its environment can have a major e�ect
on a protocol. Speci�cally we will demonstrate a number of attacks on
published and/or widely used protocols that are not feasible against the
protocol running in isolation (even with multiple runs) but become fea-
sible in some application environments. We will also discuss the tradeo�
between putting constraints on a protocol and putting constraints on the
environment in which it operates.

1 Introduction

Much work has been done on ensuring that cryptographic protocols satisfy their
security requirements. This work usually assumes a very pessimistic model; it
is assumed that the protocol is running in a network controlled by a hostile
intruder who can read, alter, and delete messages, and moreover that some le-
gitimate users of the network may themselves be in league with the intruder, who
as a result will have access to a certain number of keys and cryptographic algo-
rithms. As might be expected, it is di�cult to ensure that a protocol attains its
security goals in such an environment, and there are a number of cases in which
security aws have been found in protocols well after they were published or even
�elded. However, a number of people have developed formal requirements, that if
satis�ed, are intended to guarantee that the protocol operates correctly, as well
as formal techniques for proving that these requirements hold. Usually, these
requirements boil down to requiring that secrets (e.g. cryptographic keys) not
be revealed and that, if one side or the other thinks that the protocol completed,
then it should not have been interfered with in any \meaningful" way.
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However, most of these formal requirements, as well as the tools for proving
them correct, su�er from a limitation. They are generally used to reason about
a single set of message ows running in isolation, and usually do not take into
account the applications to which the protocol is put, the mechanisms of which
the protocol is making use, and any similar protocols with which the protocol
may be interacting. But all of these can have a major impact on the security of
the protocol.

This paper demonstrates, via some attacks on well-established protocols, the
dangers of ignoring the environment (which includes all other protocols that
may be running concurrently with the protocol in question) when analyzing the
security of authentication and key-exchange protocols. By \environment" we
mean the combination of four factors, which we can think of as existing above,
below, and on the same level as the protocol, respectively:

1. the intentions and capabilities of an attacker;
2. the applications using the protocol;
3. the functions (e.g. encryption, generation of random numbers, etc.) on which

the protocol depends, and;
4. other similar protocol executions with which the current execution may or

may not interact.

It is known that, for any cryptographic protocol, it is possible to construct
another protocol with which it interacts insecurely [18], given that the two pro-
tocols share some secret information. Such general \attack protocols" are not
always realistic, but the authors of [18] are able to construct many examples
that are, and to develop several design principles that can help to prevent these
attacks. The aim of our paper is to extend this approach further by showing that
even the strongest requirements on a protocol are not enough to guarantee the
security of a protocol interacting with even a \reasonable" environment unless
we put restrictions on the environment as well as the protocol. We will do this by
presenting as examples protocols that satisfy increasingly strong requirements,
each time showing how they could be subverted by seemingly benign aspects of
the environment that are exploited by a hostile intruder.

We begin by describing (in Section 2) the notion of a threat environment,
which comprises the assumptions made about the capabilities and goals of a pos-
sible attacker. We describe two well-known attacks on cryptographic protocols,
both of which came about as the result of changing assumptions about the threat
environment. We then present the current standard de�nition of the threat en-
vironment, and argue that it is not adequate to prove a protocol's security. In
Section 3 we extend our argument by recalling two known attacks. Even though
these attacks focus on a protocol run in isolation, they make our point that when
analyzing one protocol (or sub-protocol) one must keep in mind the environment
in which this protocol is expected to run. The �rst attack demonstrates that sep-
arately analyzing sub-protocols of a given protocol, without making sure that
the composition of the two sub-protocols is secure, is dangerous. It also demon-
strates our point that the threat environment can vary according to the protocol



and its intended application. The second attack concentrates on the danger in
several concurrent runs of the same protocol. We discuss requirements on the
environment that could have prevented this problem, as well as the protocol
requirement known as \matching histories" which requires that principals have
identical message histories after a protocol completes. Then, in Section 4 we
describe an attack on a protocol satisfying matching histories that demonstrates
possible weaknesses that arise from bad interactions between a key exchange
protocol and an \application protocol" that uses the key. This also motivates
the de�nition of a stronger requirement, \agreement," which requires that princi-
pals not only have identical message histories but agree on who they are talking
to. The necessity of protecting secrets, even malformed or immature ones, is
discussed in Section 5. In this section we �rst show how a protocol satisfying
agreement can be foiled by an intruder who sends messages that have di�erent
meanings to sender and receiver, causing the receiver to respond with an inap-
propriate message. We then show how a protocol that satis�es the even stronger
requirement of extensible-fail-stop, which would outlaw such type of behavior,
can be tricked when it interacts with a seemingly harmless challenge-response
protocol. We discuss our �ndings in Section 6 and give some recommendations
for environmental requirements, as well as a discussion of open problems.

2 Threat Environments

One of the most obvious features of an environment is the set of assumptions
that are made about the capabilities of the intruder who is trying to subvert
the protocol. As a matter of fact, many of the attacks that have been found on
published protocols are found as a result of changing the threat environment
model; a protocol that was designed to be secure against one type of threat may
not be secure against another. We give here two examples, discussed by Pancho
in [24].

Both of these attacks are on early protocols due to Needham and Schroeder
in [23]. These protocols were some of the earliest proposed for distributing keys
over a network, so it is not surprising that the threat model was still evolving at
the time. In particular, Needham and Schroeder made two assumptions which
are not commonly made today. The �rst was that old session keys would not be
vulnerable to compromise, and the second was that principals would only try to
communicate securely with other principals that they trusted.

Both of these protocols used an architecture that has become standard among
cryptographic protocols today. In this architecture, principals possess long-term,
or master, keys which are used to distribute shorter-term, or session, keys. The
master keys may possibly be distributed by some non-electronic means, while
the session keys will be distributed electronically over the network. The rationale
behind this is manifold: First, in networks of any size it is infeasible for keys to be
generated and assigned so that all principals share a unique key with each other
principal. Second, limited use of the master keys makes them less vulnerable to
compromise. Third, this limited use makes it possible to restrict more expensive



forms of encryption (such as public key) to encryption with the master key and
to use cheaper encryption for the session keys, which will encrypt the highest
volume of tra�c.

The �rst of these protocols involves two parties who wish to communicate
with each other using a key server. Each party shares a pairwise key with the
server, and the protocol proceeds as follows:

Message 1 A! S : A;B;RA

A requests a key from the server S to communicate with B. It includes a

random nonce RA so that it can verify the recency of any message it gets

from the server. If it receives an encrypted message from the server con-

taining RA, it will know that the message could only have been generated

after the server saw RA.

Message 2 S ! A : fRA; B; kAB ; fkAB; AgkBSgkAS

The server creates a key kAB . It encrypts the key together with A's name

using the key B shares with S. Then it uses kAS , the key S shares with A,

to encrypt RA, B's name, the new key kAB , and the encrypted message

for B.

Message 3 A! B : fkAB ; AgkBS

After A receives and decrypts the message from S, it forwards the key to

B.

Message 4 B ! A : fRBgkAB

B can verify the the key is from the server and is intended for communica-

tion with A, but it still needs to verify that the message is not a replay. It

does this by creating its own nonce, encrypting it with kAB , and sending

it to A.

Message 5 A! B : fRB � 1gkAB

A decrypts the nonce, subtracts one, reencrypts it, and sends it to B.

When B receives the message and decrypts it, it can verify that it can

only have come from someone who knows kAB . Since only A (and the

server) is assumed to know kAB , and the server is assumed to be honest,

B can assume both that the key is recent and that it is talking to A.

Denning and Sacco found the following attack, based on the assumption
that old session keys can be compromised. In this attack, the intruder not only
compromises the old session key, but has been able to record the communication
by which the old session key was distributed:



Message 3 IA ! B : fkAB ; AgkBS

An intruder, pretending to be A, resends an old encrypted message con-

taining an old compromised key for A and B.

Message 4 B ! A : fRBgkAB

B responds according to the rules of the protocol.

Message 5 IA ! B : fRB � 1gkAB

The intruder intercepts B's message to A. Since it knows the old key, it

can decrypt B's message and produce the appropriate response.

The other protocol involves two principals who use public key encryption to
set up a session with each other. This protocol has two parts, one in which the
principals obtain each other's public keys from a server, and one in which they
use the public keys to set up a session with each other. Since the attack does
not involve the �rst part, we present only the second part here:

Message 1 A! B : fRA; AgkB

A sends a nonce RA, together with A's name to B, encrypted with B's

public key. B decrypts to get A's name.

Message 2 B ! A : fRA; RBgkA

B generates a nonce RB and sends it together with RA to A, encrypted

with kA. A decrypts the message. If it �nds RA, it assumes that this is a

message from B in response to its original message.

Message 3 A! B : fRBgkB

A encrypts RB with kB and sends it to B. B decrypts the message. If

it �nds RB , it assumes that this is a message from A in response to its

original message.

The attack, as presented by Lowe in [20], proceeds as follows. Note that this
attack only works if one of the principals attempts to communicate with an
untrusted principal �rst:

Message 1 A! I : fRA; AgkI

A initiates communication with I .

Message 10 IA ! B : fRA; AgkB

I initiates communication with B, using RA.

Message 20 B ! A : fRA; RBgkA

B responds to A. A decrypts and �nds RA.



Message 3 A! I : fRBgkI

Thinking that the previous message is a response from I , A responds in

kind. I decrypts RB and can now use it to impersonate A to B.

Message 30 IA ! B : fRBgkB

I completes the protocol with B.

Over the years, the community has come to agree on a standard intruder
model which has come to be so widely accepted that it is sometimes assumed
that Needham and Schroeder were attempting to design their protocols according
to it but failed (see Pancho [24] for a discussion of this). In this model we
assume that the network is under the control of a hostile intruder who can
read, modify, and delete message tra�c, and who may be in league with corrupt
principals in the network. We assume that honest principals have no way of
telling corrupt principals from other honest principals, and thus may be willing to
initiate communication with these dishonest principals. Finally, we assume that
old session keys may be compromised, although we usually do not assume that
the master key that is used to distribute the session key will be compromised.

This is accepted as the standard intruder model, but is it the last word? We
argue that it is not.

First of all, threat models can change. For example, the standard threat
model alluded to above takes into account the compromise of old session keys,
but does not concern itself with the threat of session keys being compromised
while the session is still current. In the next section we will discuss a protocol in
which the real-time compromise of session keys is a realistic threat.

Secondly, the model does not take into account other, possibly benign aspects
of the environment which may a�ect the security of the protocol. These include
other, similar, protocols that the protocol could be tricked into interacting with,
as well as applications that make use of the protocol in ways not anticipated by
the designer. We will discuss these aspects of the environment in the remainder
of the paper.

3 Protocol Composability and Matching Histories

A �rst example that illustrates the danger of separately analyzing sub-protocols
of a larger protocol is taken from [22] which in turn discusses an attack, �rst
described in [5], on a very early version of SSL. SSL negotiates a key between
a client and a server. The early version included an optional client authentica-
tion phase, achieved via a digital signature on the key and a nonce provided
by the server, in which the client's challenge response was independent of the
type of cipher negotiated for the session, and also of whether or not the authen-
tication was being performed for a reconnection of an old session or for a new
one. Instead, this information was authenticated by the key that was negotiated
between the client and the server. Moreover, this version of SSL allowed the use



of cryptographic algorithms of various strength (weak algorithms for export and
stronger ones for domestic use), and it was not always clear by inspection of
the key whether weak or strong cryptography was being used. This allowed the
following attack (note that in this version of SSL, session keys were supplied by
the client):

1. A key k is agreed upon for session A using weak cryptography.
2. Key k is broken by the intruder in real time.
3. The client initiates a reconnection of session A.
4. The intruder initiates a new session B, pretending to be the client, using

strong cryptography together with the compromised key k.
5. As part of the connection negotiations for session B, the server presents a

challenge to the client. The client should return a digital signature of both
k and the challenge. The intruder can't do this itself, but it can pass the
server's request on to the client, who will take it to be part of the recon-
nection negotiations for session A, and produce the appropriate response.
The intruder passes the response on to the server as part of the session B

negotiations, and the protocol completes.
6. If the client would have been given access to special privileges as a result of

using strong cryptography, this could lead to the intruder gaining privileges
that it should not be able to have by breaking the key k.

This attack involves two environmental features. One involves a confusion of
the reconnection protocol with the connection protocol. Thus, it is an example
of a failure of composition which would not have been found if the two protocols
had been analyzed separately. The second involves the use of strong and weak
cryptography. Authentication protocol analysis often assumes that cryptography
is \perfect" (i.e., modeled as a black box) and that keys are not broken directly.
However, this protocol explicitly distinguishes between strong and weak cryp-
tography, thus explicitly addresses relative invulnerability to key compromise.
Although vulnerability of later authentications because of earlier session key
compromise has long been recognized as a problem protocols should avoid [12],
the use of weak cryptography also raises the possibility of a compromise during

a session, which can then be used to attack other, concurrent sessions.
The attack is a failure of an authentication requirement called matching

conversations [4] or matching histories [6, 13]. We cite the de�nition from [13]:
\in all cases where one party, say Alice, executes the protocol faithfully and
accepts the identity of another party: at the time that Alice accepts the other
party's identity (before she sends or receives a subsequent message), the other
party's record of the partial or full run matches Alice's record." Speci�cally the
(composed) protocol fails to satisfy matching histories because the client's record
of the protocol shows a request to use weak crypto via a reconnection, but the
server's record shows a request to use strong crypto via a new connection.

Later versions of SSL �xed the above problem by including signed hashes of
all messages previously sent in a given protocol round. This prevents an attack on
the histories of the runs. Note the subtlety here. If the hashes were authenticated



by using the session key, then the protocol would appear to satisfy matching
histories. However, an adversary strong enough to break k under weak crypto
could then spoof an authentication of k for the client using strong crypto, thus
violating matching histories.

A protocol that was designed to meet the matching histories requirement
was given in [13]. In this station-to-station (STS) protocol, a publicly known
appropriate prime p and primitive element � in GF (p) are �xed for use in Di�e-
Hellman key exchange. It is not necessary to understand the underlying mathe-
matics to follow the protocol. All that is necessary is to know the following: A
has a public exchange key, RA, and a private exchange key, x, while B has public
exchange key RB , and private exchange key y. They can form a session key, kAB ,
because the public-private key pairs are chosen so that RA

y = RB
x = kAB . (All

arithmetic is modulo p.) Parties A and B use a common signature scheme: sU [�]
indicates the signature on the speci�ed argument using the private signature key
of party U . f�gk indicates the symmetric encryption of the speci�ed argument
under key k. Public key certi�cates are used to make the public signature keys
of A and B available to each other. In a one-time process prior to the exchange
between A and B, each party must present to a trusted certi�cate server, T ,
her true identity and public key (e.g., IDA, kA), have T verify the true identity
by some (typically non-cryptographic) means, and then obtain from T her own
certi�cate. The protocol is as follows. (Here the public parameters are a �nite
group of large prime order, and a generator, �, of this group. All exponentiations
are done in the group arithmetic.)

1. A generates a random positive integer x, computes RA = �x and sends RA

to a second party, B.
2. Upon receivingRA, B generates a random positive integer y, computes RB =

�y and kAB = (RA)
y.

3. B computes the authentication signature sB [RB ; RA] and sends to A the
encrypted signature TokenBA = fsB [RB ; RA]gkAB along with RB and his
certi�cate CertB . Here `,' denotes concatenation.

4. A receives these values and from RB computes kAB = (RB)
x.

5. A veri�es the validity of B's certi�cate by verifying the signature thereon
using the public signature-veri�cation key of the trusted authority. If the
certi�cate is valid, A extracts B's public veri�cation key, kB from CertB .

6. A veri�es the authentication signature of B by decrypting TokenBA, and
using kB to check that the signature on the decrypted token is valid for the
known ordered pair RB ; RA.

7. A computes sA[RA; RB ] and sends to B her certi�cate CertA and TokenAB =
fsA[RA; RB ]gkAB .

8. A sets kAB to be the shared key with B in this exchange.
9. Analogously, B checks CertA. If valid, B extracts A's public veri�cation key

kA and proceeds.
10. Analogously, B veri�es the authentication signature of A by decrypting

TokenAB , and checking the signature on it using kA and knowledge of the
expected pair of data RA; RB .



11. Analogously, B sets kAB to be the shared key with A in this exchange.

Lowe argued in [21] that this protocol is subject to attack. Speci�cally:

Message 1 A! CB : RA

Message 10 C ! B : RA

Message 20 B ! C : RB ; fsB [RB ; RA]gkAB

Message 2 CB ! A : RB ; fsB[RB ; RA]gkAB

Message 3 A! CB : fsA[RA; RB ]gkAB

Here, messages 1, 2, and 3 are a protocol run that Alice attempts to run with
Bob, but that Charlie attacks. Messages 10 and 20 are a (partial) protocol run
that Charlie initiates with Bob. This is an attack according to Lowe because
Alice believes (correctly) that she is running the protocol with Bob. But, Bob
believes that he is running the protocol with Charlie. Lowe considers this to be
an attack \since A ends up holding incorrect beliefs". For reasons such as this,
Lowe considers matching histories to be an insu�ciently strong requirement. He
proposes a requirement he later called agreement : whenever an agentA completes
a run of the protocol, apparently with B, then B has recently been running the
protocol, apparently with A, and the two agents agree upon who initiated the
run, and agree upon all data values used in the run; further there is a one-one
relationship between the runs of A and the runs of B. (If we take the one-one
requirement as implicit in the matching-histories de�nition, then agreement is
just matching histories where the protocol initiator and responder must always
be speci�ed in the record of all principals.)

Whether or not the above is correctly called an attack may be argued. The
failure of agreement is clear. However, Alice ends up holding incorrect beliefs
only if she forms the incorrect belief that Bob believes he has been running
the protocol with Alice. There is no speci�c reason to attribute such a belief to
Alice here, since she has received no authenticated information to that e�ect.
Nonetheless, if we consider the protocol in composition with its environment,
then an attack may be possible. We consider the e�ect of composing protocols
with di�erent environments in the next section.

4 Application Environments

Until now, our discussion of composition has involved either interleaved runs
of a protocol with itself or of di�erent subprotocols of a protocol. But what
about other distinct protocols that may be running alongside of the one being
considered? This concern may potentially be \brushed aside" by requiring that
the protocol in question be the only protocol of its kind (authentication, key-
exchange, etc.) to be run in the system. This way, one may not have to consider



the potential interactions of di�erent protocols because only one protocol (pos-
sibly with subprotocols) is permitted to run in a given context. (An exception
to this assumption and analysis of the resulting implications was given in [18].)
This may be a reasonable assumption to make in some cases. However, even if we
can assume our protocols to be running in isolation we must still contend with
the applications that make use of the authenticated keys that were established
using the protocol in question.

Consider the following attack, described by Shoup in [25]. It involves the use
of an \application protocol" that uses shared keys. Here principals authenticate
by encrypting a challenge. To be a bit more vivid, consider an environment in
which monitoring devices establish authenticated communications with a server.
Perhaps these are used like watch keys to indicate that an actual person is
present at the location of the device; someone must physically engage the device
in some way for it to operate. The server might send out a nonce challenge, and
the monitoring devices would then encrypt the challenge in a return message to
prove that a person was present to operate the monitor. Assume that monitors
initiate contact with the server. So the application would be something like.

Application Message 1 B ! A : challenge

Application Message 2 A! B : fchallengegkAB

Now, suppose that this application protocol uses STS to establish session
keys. Also suppose that monitors are not expected to recognize or test the format
of the challenge in any way. This is perhaps reasonable since the challenge should
be unpredictable and the authentication gives the monitor credit rather than
responsibility [1]. Let us now consider the STS protocol and the putative attack
given above. The attacker C has access to RA and RB as plaintext. Thus, once
the protocol has completed with A, CB could send to A the challenge sc[RA; RB ].
To which A would respond with fsc[RA; RB ]gkAB . That is, after the application
challenge and response of

Application Message 1 CB ! A : sc[RA; RB ]

Application Message 2 A! CB : fsc[RA; RB ]gkAB

the following message may be added to the Lowe attack on STS:

Message 30 C ! B : fsc[RA; RB ]gk

This way, the above debatable attack by Lowe is turned into a clear attack
with more signi�cant consequences. That is, C can now use the resulting message
to complete the protocol run begun with B. Consequently, from now on, anytime
B issues a challenge, credit for encryption of it with kAB will be given to C rather
than to A. Whether or not the Lowe attack indicates an inadequacy of matching
histories to capture practical authentication goals, this attack would seem to do
so|in the presence of such an application.



One possible solution would be to strengthen the protocol to include the
name of the intended recipient of each message within the signature. In fact,
this is the revision suggested by Lowe in [21]. STS so strengthened appears to
satisfy agreement.

Another possible solution is to restrict the application environment in some
way. For example, in the case of the STS protocol, we could require that any
protocol that makes use of a key generated by an instance of the STS protocol
would need to apply some transformation to it �rst, such as a hash function. This
is indeed what is done in Krawczyk's [19] SKEME protocol, which is based on
STS. We consider the implications and limitations of environmental requirements
in the next section.

5 Environmental Requirements

The application environment is obviously more di�cult to control or specify than
the security protocol, so we should justify the need to restrict the environment
before we consider how to do so. Are there examples of attacks on protocols
that satisfy agreement? One example of such was �rst given by Davida long
ago [11] and later generalized in [17]. Although neither of the papers explicitly
notes the connection, the idea relies on a concept similar to blinding in the sense
of Chaum [10], who used it e�ectively in the design of anonymous payment
protocols. A public-key encryption is blinded so that the intended recipient gets
unrecognizable garbage upon decrypting a message and discards the result as
worthless. If the attacker is able to obtain this discarded message, he can then
apply the blinding factor to obtain the plaintext.

The attack applies to the RSA cryptosystem, which encrypts a message m
by raising it to a public exponent e modulo a public modulus N = p � q, where p
and q are two primes. Only someone who knows the secret factorization is able
to compute d so that md�e = m mod N , and so decrypt the message.

The attacker A proceeds by �nding an encrypted message, me mod N , that
may have previously been sent to a principal B using B's public key e and N .
The attacker �rst computes xe mod N for some x and proceeds as follows:

A! B : me � xe = (m � x)e mod N
B receives the message and decrypts it to obtain m � x. Since this looks like

garbage to B, he discards it. If the message is discarded in such a way that the
attacker A can �nd it, A can then multiply it by x�1 mod N to obtain the secret
m.

In one sense, this protocol satis�es agreement, since A and B agree on the
messages that were sent between the two parties, and on who they were sent
to. In another sense, it does not, since A and B disagree on the meaning of
the messages sent. Since B \responds" to a nonsense message by putting it in a
place where A can �nd it, this semantic form of disagreement can have serious
consequences.

We can prevent problems like this by requiring that people secure their
garbage bins|to use the Joye-Quisquater term. If we did this and required



protocols to satisfy, not just agreement in Lowe's sense, but also that principals
never send anything in response to an improper protocol message, it would seem
that we could be free of such questions.

Such an approach was taken in [15] with the introduction of extensible-fail-
stop protocols. These e�ectively require that agreement can be checked on each
message as it is received. Active attacks on a message therefore cause any later
messages not to be sent. Also, protocols that are extensible-fail-stop can be
arbitrarily composed. (Similar concepts were discussed in [16].)

To illustrate, here is a variant on the Needham-Schroeder shared-key protocol
presented in Section 2. It has been modi�ed to be extensible-fail-stop.

Message 1 A! S : (A;S; TA; NSSK;R; 1; B);

fh(A;S; TA; NSSK;R; 1; B)gkAS

Message 2 S ! A : (S;A;NSSK;R; 2);

fh(S;A;NSSK;R; 2);

(kAB ; B; fh(S;B; Ts; NSSK;R; 3); (kAB; A)gkBS )gkAS

Message 3 A! B : (S;B; Ts; NSSK;R; 3);

fh(S;B; Ts; NSSK;R; 3); (kAB; A)gkBS

Message 4 B ! A : (B;A;NSSK;R; 4);

fh(B;A;NSSK;R; 4); RBgkAB

Message 5 A! B : (A;B;NSSK;R; 5);

fh(A;B;NSSK;R; 5); RBgkAB

For each message, a hash of the message parameters is encrypted together
with message data using a key shared between the sender and receiver. Parame-
ters indicate the sender and receiver, possibly a timestamp, a protocol identi�er
(we assume for convenience that there is only one version of NSSK), a unique
and unpredictably generated protocol round identi�er, R, a message sequence
identi�er, and relevant data. Thus in the �rst message, Alice tells the server that
she would like to establish a session key with Bob. The server is assumed to keep
a list of previously used round identi�ers within the lifetime of the timestamp,
TA and to check that R is not on that list. It should be clear that this protocol is
extensible-fail-stop, i.e., that the recipient of each message can completely deter-
mine that s/he is receiving the next appropriate message in the protocol. Thus,
there is no possibility either of using this protocol as an oracle to generate mes-
sages or of inserting a message from another protocol (or from an earlier part of
the same protocol) and having it accepted as legitimate. This is therefore about
as strong a requirement as one could impose on a protocol itself. Nonetheless, if
the application environment is not also restricted in some way, the protocol is
subject to attack.

Suppose that an application allows \eager" use of keys before the protocol has
been completed. Only if the authentication protocol does not complete within



some reasonable timeout is there an alarm or noting of anomaly in the logs.
This eagerness might be all the more reasonable if the protocol distributing the
keys is extensible-fail-stop and as explicit as this one. In this case, there would
seem to be no possibility of mistake about who the session key is for, who the
relevant principals are, or the roles they each play (i.e., initiator or responder).
But, allowing eager use of keys in an application such as the monitor example
described above could be used to attack the protocol.

Speci�cally, when Alice begins NSSK for a session with Bob, the attacker
prevents the third message from arriving. Then, for the application challenge-
response he produces:

Application Message 1 CB ! A : h(B;A;NSSK;R; 4); RB

Application Message 2 A! CB : fh(B;A;NSSK;R; 4); RBgkAB

The attacker uses the response from Alice for the fourth message in NSSK,
and intercepts the �nal message from Alice to Bob. Alice will now be spoofed
into thinking she has completed a handshake with Bob when Bob was never
present, with all the potential implications previously discussed.

Note that the original Needham-Schroeder shared-key protocol is just as
vulnerable to this attack (and others as well). We have strengthened it to be
extensible-fail-stop to show that even such a strong requirement on protocol
authentication may not be adequate to preclude failure if the environment is not
somehow restricted.

6 Discussion

We have given a set of increasingly stringent de�nitions of security and shown
how they can be subverted by interaction with a carelessly designed environ-
ment. The obvious question arises: are there conditions that we can put on an
environment so that we can guarantee that it will not subvert the goals of a
reasonably well-behaved protocol? Some rules of thumb, in the spirit of Abadi
and Needham [2], Anderson and Needham [3], and Kelsey and Schneier [18], and
expanding on those we presented in [9], are suggested by the examples we have
cited.

RoTh 1. Know your threat environment, and the threat environment for which
your protocol was designed. If a protocol is being transferred from one threat
environment to another, make sure that it is secure in the new environment
as well as the old one.

As we saw from our discussion of the Needham-Schroeder protocols threat
environments can change, and a protocol which was secure with respect to one
set of threats may be insecure with respect to another. And, as we saw from
our discussion of the SSL protocol, there is no such thing as a \one-size-�ts-all"
threat environment. Threats such as the real-time compromise of keys which
may be silly under one set of assumptions may be realistic under another set.



RoTh 2. The environment should not use protocol keys or other secrets in un-
altered form.

Thus, in the attack on STS above, the session key kAB should not be the
same key as the key k used internally in the STS protocol. In fact, the two keys
should be \cryptographically independent". For instance, let ksts = PRFk(0)
and kAB = PRF (1), where PRF is a pseudorandom function. Now, use ksts to
encrypt the STS messages, and use kAB as the session key. We remark that this
technique for guaranteeing the \virginity" of the session key is used in SKEME
[19] and in IKE, the Internet Key Exchange protocol (described in [14]). The con-
cept underlying this principle has not only been used in the design of protocols
such as IKE and SKEME but also in proving theoretical results about protocol
composition [27, 26]. It is also similar in spirit to the design principle given in
[18] which recommends limiting the scope of keys; indeed, what it does is give a
practical means of accomplishing just that. More recent theoretical work along
these lines can be found in [8], which proposes a speci�cation for key-exchange
protocols, and demonstrates that a key exchanged using a protocol that satis-
�es the speci�cation can be used within standard shared-key \secure channel"
mechanisms, without fear of bad interferences between protocols. Further, [7]
provides a general framework for writing speci�cations for protocols, with an
attempt to guarantee that security is maintained in a large set of computational
environments.

RoTh 3. A protocol should be designed as much as possible to be resilient
against the release of secrets, even potential or obsolete secrets.

We note that the protocol used in the blinding attack failed to satisfy this
requirement, as well as the fail-stop version of NSSK, although in the latter case
the requirement could have been satis�ed with the use of RoTh 2.

RoTh 4. Values established during a protocol run should not be used in appli-
cations by a principal before that principal completes his run.

This one might seem obvious, but as we saw above, such eager use might
involve a key that has been released at most to valid principals, and so appear
harmless. Also, this might be an onerous requirement if applications have tight
real-time constraints that would be hard to meet if they must wait for the au-
thentication protocol to �nish. In that case, we may want to make use of some
of the other Rules of Thumb such as RoTh 2 or RoTh 3 to guarantee security.

RoTh 5. Insist, as much as possible, on only interacting with protocols whose
messages contain unique protocol identi�ers. More generally, try to make
certain that a message intended for use in one protocol, or protocol compo-
nent, can not be mistaken for a message for use in one protocol, or protocol
component.

This use of unique protocol identi�ers is recommended in [18] and has also
been used in the design of extensible-fail-stop protocols. We note that, in the



attack on the extensible-fail-stop protocol in Section 5, if both protocols involved
had followed this principle instead of just one, then the attack would not have
been possible. Again, this may be onerous, e.g., if the environment requires the
use of o�-the-shelf applications that are not extensible-fail-stop. This leads us to

RoTh 6. Any �x to the environment should be made as close to the protocol
as possible.

To illustrate what we mean by this, we consider the use of challenge-and-
response protocols to illustrate environmental attacks. All of these attacks could
have been prevented if each time the principal responded to the challenge it
signed, instead of the challenge itself, a hash of the challenge and some text
indicating what it believed the challenge was for. Indeed, this was how the weak-
ness in the SSL protocol was ultimately �xed. However, in the case of SSL, the
challenge-and-response protocol was directly under the control of the protocol
designer, since it was part of the SSL protocol suite. In our other examples this
was not necessarily the case. Thus, in the case of the Station-to-Station protocol,
it made more sense to require that keys distributed by the protocol be trans-
formed before they were used. This was a feature that could be implemented, for
example, by putting a wrapper around the protocol that transformed the keys,
a feature that would only have to be added once for every time the protocol was
implemented. Thus this was an easier requirement to satisfy than assuring that
all challenge-and-response protocols that used keys generated by the protocol
were implemented properly.

These observations lead to further questions: Is there a minimal set of re-
quirements that we can put on an environment such that the various types of
protocol requirements that we have described will guarantee security? If so, is
it unique? If so, what is it? If not, what are the possibilities? Clearly, it is pos-
sible for any protocol to generate an environment that will subvert its security
goals; the environment that releases all secrets will do the trick. But it seems
reasonable to expect, that by using some combination and augmentation of the
rules of thumb that we have already described, we should be able to come up
with requirements for environments in which the di�erent de�nitions of protocol
security in isolation would also guarantee security in combination with the envi-
ronment. Moreover, although in this paper we have limited ourselves to attacks
involving interactions between protocol messages, we realize that the environ-
ment that a protocol depends on includes much more, including sound random
or pseudo-random number generation, secure access control for keys, and the
behavior and assumptions of users interacting with the system, which could also
be brought into play. In summary, we believe that the study of the interaction
of a security protocol with its environment, and the interaction of protocol re-
quirements with environmental requirements is a potentially rewarding one of
which we have only scratched the surface in this brief study.
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